

Dan Li,^{a,b} Chiomui Chan,^{a,b}‡
Yu-He Liang,^{a,b*} Xiaofeng
Zheng,^{a,b} Lanfen Li^{a,b} and
Xiao-Dong Su^{a,b}

^aNational Laboratory of Protein Engineering and Plant Genetic Engineering, Peking University, Beijing 100871, People's Republic of China, and ^bDepartment of Biochemistry and Molecular Biology, College of Life Sciences, Peking University, Beijing 100871, People's Republic of China

‡ Present address: Department of Biochemistry, Roger Adams Laboratory, B4, MC 712, 600 South Mathew Avenue, University of Illinois-Urbana, Urbana, IL 61801-3602, USA.

Correspondence e-mail: liangyh@pku.edu.cn

Received 16 March 2005

Accepted 8 April 2005

Online 22 April 2005

Preparation, crystallization and preliminary X-ray analysis of YjcG protein from *Bacillus subtilis*

Bacillus subtilis YjcG is a functionally uncharacterized protein with 171 residues that has no structural homologue in the Protein Data Bank. However, it shows sequence homology to bacterial and archaeal 2'-5' RNA ligases. In order to identify its exact function *via* structural studies, the *yjcG* gene was amplified from *B. subtilis* genomic DNA and cloned into the expression vector pET21-DEST. The protein was expressed in a soluble form in *Escherichia coli* and was purified to homogeneity. Crystals suitable for X-ray analysis were obtained that diffracted to 2.3 Å and belonged to space group *C*2, with unit-cell parameters *a* = 99.66, *b* = 73.93, *c* = 61.77 Å, β = 113.56°.

1. Introduction

The *Bacillus subtilis* *yjcG* gene encodes a putative protein of 171 amino-acid residues with a predicted molecular weight of 19.5 kDa. The YjcG protein shows a sequence identity of 57% to a 2'-5' RNA ligase from *B. cereus* and contains two copies of the highly conserved HXTX (where *X* is a hydrophobic amino-acid residue) motif (Fig. 1), which is a characteristic feature of the bacterial and archeal 2'-5' RNA ligase family (Kato *et al.*, 2003). 2'-5' RNA ligase activity was first found in *Escherichia coli* and then detected in many other bacterial and archeal species and *in vitro* the RNA ligases can ligate 5' and 3' half-tRNA molecules into a mature tRNA molecule through a 2'-5' phosphodiester linkage (Greer *et al.*, 1983; Arn & Abelson, 1996). Using sensitive sequence profile-analysis methods, it was

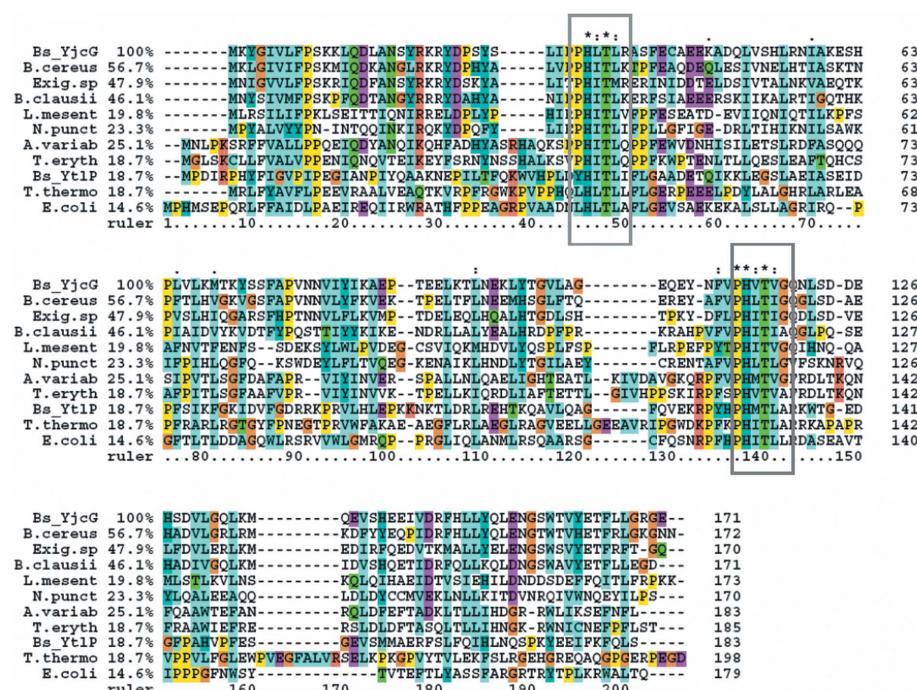


Figure 1

Multiple sequence alignment of YjcG homologues. The conserved HXTX motifs are marked with grey boxes and the percentage identities with *B. subtilis* YjcG are indicated after the organism names; asterisks indicate strictly conserved residues. The alignment was performed using the program CLUSTALX (Thompson *et al.*, 1997). Bs_YjcG, *B. subtilis* YjcG; Exig.sp, *Exiguobacterium* sp.; L.mesent, *Leuconostoc mesenteroides*; N.punct, *Nostoc punctiforme*; A.variab, *Anabaena variabilis*; T.eryth, *Trichodesmium erythraeum*; Bs_Yt1p, *B. subtilis* Yt1p; T.thermo, *Thermus thermophilus*.

© 2005 International Union of Crystallography
All rights reserved

recently revealed that the bacterial and archeal 2'-5' RNA ligase family belongs to the 2H phosphoesterase protein superfamily, named after the two highly conserved histidines in the highly conserved HXTX motifs. The *B. subtilis* YjcG protein represents a YjcG-like subgroup belonging to this superfamily. The proteins from this group were suggested to react on some unknown molecules with potential 2'-3' cyclic phosphoester linkages (Mazumder *et al.*, 2002). So far, the crystal structure of the 2'-5' RNA ligase from *Thermus thermophilus* HB8 has been determined and showed a high structural similarity to *Arabidopsis thaliana* cyclic phosphodiesterase (Kato *et al.*, 2003). Except for the two HXTX motifs, the sequence identity between the *T. thermophilus* 2'-5' RNA ligase and the *B. subtilis* YjcG protein is below 20% (Fig. 1) and no homologues were found in the Protein Data Bank for the *B. subtilis* YjcG protein. Determination of the *B. subtilis* YjcG structure will help us to understand the function of YjcG-like proteins in bacteria.

2. Materials and methods

2.1. Cloning and expression

The genomic DNA of *B. subtilis* strain 168 was used as the template for the polymerase chain reaction (PCR). The *yjcG* gene was cloned into the pET21-DEST destination vector using Gateway cloning technology (Ren *et al.*, 2004). The primers used in cloning were 5'-CACCATGAAATACGGAATCGTTTAT-3' and 5'-TTATTCTCCTCTGCCTAGCAA-3'. *E. coli* strain BL21(DE3) cells harbouring the *yjcG* expression plasmid were grown aerobically in Luria-Bertani (LB) medium containing 50 mg ml⁻¹ ampicillin at 310 K until an OD₆₀₀ of 0.6–0.8 was reached. The cells were induced with 1 mM isopropyl- β -D-thiogalactopyranoside and grown for a further 5 h at 303 K. The cells were then harvested by centrifugation at 6700 g for 10 min. The cell pellet was resuspended in buffer *A* containing 20 mM Tris-HCl, 500 mM NaCl pH 7.5 and then disrupted by sonication.

2.2. Protein purification

The disrupted cells were centrifuged at 34 700 g at 277 K for 30 min. The supernatant was loaded onto a 5 ml HiTrap Ni column (Amersham) equilibrated with buffer *A*. The unbound proteins were flushed

Figure 2

Crystal of *B. subtilis* YjcG. The dimensions of the crystal are approximately 0.1 × 0.1 × 0.8 mm.

Table 1

Data-collection statistics of YjcG.

Values in parentheses are for the highest resolution shell.

Wavelength (Å)	0.981
Resolution (Å)	50–2.3 (2.38–2.3)
Completeness (%)	98.8 (95.0)
R_{sym}^{\dagger} (%)	7.6 (17.7)
Mean $I/\sigma(I)$	10.8 (4.7)
Space group	<i>C</i> 2
Unit-cell parameters (Å, °)	$a = 99.66, b = 73.93, c = 61.77, \beta = 113.56$
No. of observed reflections	56855
No. of unique reflections	17981
Molecules per AU	2
V_M (Å ³ Da ⁻¹)	2.67

† $R_{\text{sym}} = \sum |I_{\text{obs}} - I_{\text{avg}}| / \sum I_{\text{obs}}$, where the summation is over all reflections.

with buffer *A* and the low Ni-affinity proteins were eluted with buffer *B* (20 mM Tris-HCl, 500 mM NaCl, 500 mM imidazole pH 7.5; 20% imidazole concentration). The bound proteins were successively eluted with buffer *B*. Further purification to homogeneity was carried out using a HiLoad Superdex 75 column (Amersham) with an elution buffer consisting of 20 mM Tris-HCl, 150 mM NaCl pH 7.5. The purified proteins were examined by SDS-PAGE in each step.

2.3. Crystallization

The purified protein was concentrated to 10 mg ml⁻¹ by ultrafiltration (Millipore Amincon). Crystallization was carried out using the hanging-drop vapour-diffusion method at 293 K using Crystal Screen I, Crystal Screen II and Index kits (Hampton Research) as initial screening conditions. 1 µl protein solution was mixed with 1 µl reservoir solution and equilibrated against 500 µl reservoir solution.

2.4. Data collection

X-ray diffraction data were collected on a MAR 165 CCD detector at beamline 3W1A, Beijing Synchrotron Radiation Facility (BSRF), People's Republic of China. The crystal was flash-frozen and maintained at 100 K using nitrogen gas (Oxford) during data collection; 5% (v/v) glycerol solution was used for cryoprotection. The data were processed with DENZO and SCALEPACK (Otwinowski & Minor, 1997).

3. Results

The YjcG protein was expressed in *E. coli* BL21(DE3) in a soluble form and purified to homogeneity in two steps. SDS-PAGE shows the purified protein to have a molecular weight about 25 kDa, which is in agreement with the predicted molecular weight of 19.7 kDa plus an added 4 kDa fusion part.

Microcrystals appeared in Index condition No. 47 (Hampton Research), consisting of 28% PEG MME 2000, 0.1 M bis-Tris pH 6.5. After further optimization, crystals suitable for X-ray diffraction were obtained in an optimized condition containing 0.1 M bis-Tris pH 7.3 and 24% PEG MME 2000 (Fig. 2). The YjcG crystal diffracted to a resolution of 2.3 Å and belonged to space group *C*2, with unit-cell parameters $a = 99.66, b = 73.93, c = 61.77$ Å, $\beta = 113.56$ °. Assuming the presence of two molecules per asymmetric unit gave a V_M value of 2.67 Å³ Da⁻¹ (Matthews, 1968), which corresponds to a solvent content of 53%. The data-collection statistics are listed in Table 1.

We thank the beamline staff (Drs Yu-Hui Dong and Peng Liu) at BSRF for their kind help with data collection. This work was supported by a grant from the National High Technology and

Development Program of China (863 program 2002BA711A13). Peking University's 985 and 211 grants are greatly acknowledged. YHL is the recipient of a Fok Ying Tong Education Foundation grant (94017).

References

Arn, E. A. & Abelson, J. N. (1996). *J. Biol. Chem.* **271**, 31145–31153.

Greer, C. L., Javor, B. & Abelson, J. (1983). *Cell*, **33**, 899–906.

Kato, M., Shirouzu, M., Terada, T., Yamaguchi, H., Murayama, K., Sakai, H., Kuramitsu, S. & Yokoyama, S. (2003). *J. Mol. Biol.* **329**, 903–911.

Matthews, B. W. (1968). *J. Mol. Biol.* **33**, 491–497.

Mazumder, R., Iyer, L. M., Vasudevan, S. & Aravind, L. (2002). *Nucleic Acids Res.* **30**, 5229–5243.

Otwinowski, Z. & Minor, W. (1997). *Methods Enzymol.* **276**, 307–326.

Ren, H., Liang, Y., Li, R., Ding, H., Qiu, S., Lu, S., An, J., Li, L., Luo, M., Zheng, X. & Su, X.-D. (2004). *Acta Cryst. D* **60**, 1292–1294.

Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F. & Higgins, D. G. (1997). *Nucleic Acids Res.* **25**, 4876–4882.